Python 101
Jump to navigation
Jump to search
Back to 2014.
import numpy as np # Numerical python import pylab as plt # Plotting for python # '#' comments that are interpretted as code # # Basics # #Scalars x = 4 #define variable print 'x =', x print '2x =', 2*x print 'x/2 =', x/2 print 'x squared =', x**2 #Arrays a = np.array([1,2,3,4,5]) # Need np.array ([...] is just a 'list') print 'a =', a print '2a =', 2*a print 'a squared =', a**2 print 'length of a =', len(a) print 'first element of a =', a[0] #zero indexing: 0 to N-1 print 'mean of a =', np.mean(a), a.mean() #(two ways) print 'variance of a =', np.var(a), a.var() print 'explicit varance of a =', np.sum((a-a.mean())**2)/(len(a)-1) #np.var does not use N-1 # # Analysis Example # dx, dy = np.loadtxt('data_python_101.txt', unpack=True) print dx, dy Nx = len(dx) Ny = len(dy) print 'We have %d of dx data and %d of dy data' % (Nx, Ny) #format string #Use %d for integers and %f and %e for floats (decimals) #Plot a histogram fs = 16 #fontsize for axis labels plt.hist(dx, bins = 15, range = [-4,4], histtype='step', color='blue', label=r'$\Delta$x') plt.hist(dy, bins = 15, range = [-4,4], histtype='step', color='red', label=r'$\Delta$y') plt.xlim([-4,4]) plt.legend(loc = 'upper right') plt.xlabel(r'Distance ($\mu$m)') plt.ylabel('Step Distribution') plt.savefig('step_histogram.png') plt.clf() #clear the figure #Calculate Results dx_mean = dx.mean() dy_mean = dy.mean() dx_var = np.sum((dx-dx_mean)**2)/(Nx-1) dy_var = np.sum((dy-dy_mean)**2)/(Ny-1) print "dx result: mean = %e , var = %e" % (dx_mean, dx_var) print "dy result: mean = %e , var = %e" % (dy_mean, dy_var) #Save results results = np.array([[dx_mean, dx_var], [dy_mean, dy_var]]) print 'results =', results print 'results[0,1] =', results[0,1] #2d arrays: row then column indexing np.savetxt('results.txt', results) #save results