Speed of Light Part 2
Back to 2014.
Here is an example program for fitting the data from the speed of light experiment. It reads in an associated file media:averages.txt that contains the average values for the rotational velocity of the mirror and the displacement of the reflected beams focus position, as measured with the microscope. The error on the displacements is assumed to be common among the data points and is stored in the variable disp_var (displacement variance). The error in the rotational velocities is taken to be small, but this assumption is also checked in the code. If everything goes well, the program will output best fit parameters etc as well as a PNG plot of the data and fit: media:SL_data_with_fit.png.
import numpy as np import pylab as plt from scipy.stats.stats import chisqprob vel_rev, disp = np.loadtxt('averages.txt') print 'velocities', vel_rev print 'displacements', disp vel_rad = vel_rev*2*np.pi # Convert from rev/sec to radians/sec disp_var = 0.00174356**2 #mm^2 #Plot data fs = 16 plt.errorbar(vel_rev, disp, yerr=disp_var**.5, fmt='b.') plt.xlabel("Rotational Velocity (rev/s)", fontsize=fs) plt.ylabel("Displacement (mm)", fontsize=fs) #plt.show() #Compute linear least squares solution def linear_fit(x,y,y_var): #function definition! """Assumes same variance on all y""" N=len(x) det = N*(x**2).sum() - (x.sum())**2 # determinant a = ((x**2).sum()*y.sum()-x.sum()*(x*y).sum())/det b = (N*(x*y).sum()-x.sum()*y.sum())/det a_var = (y**2).sum()*y_var/det b_var = N*y_var/det return a, b, a_var, b_var a, b, a_var, b_var = linear_fit(vel_rad, disp, disp_var) print "a =", a, '+/-', a_var**.5, 'mm' print "b =", b, '+/-', b_var**.5, 'mm/(rad/s)' #Plot line plt.plot(vel_rev, a+b*vel_rad, 'blue') #plt.show() #Compute Chi-sq nu = len(disp)-2 # number of deg of freedom chisq = np.sum((disp-(a+b*vel_rad))**2/disp_var) print "Chi-sq =", chisq, 'for', nu, 'degrees of freedom' print "PTE = ", chisqprob(chisq,nu) # PTE is a bit small...suspect error bars underestimated # Compute correction to errors disp_var_new = disp_var * chisq / nu a, b, a_var, b_var = linear_fit(vel_rad, disp, disp_var_new) print "Adjusted quantities" print "New displacement error", disp_var_new**.5, 'mm' print "a =", a, '+/-', a_var**.5, 'mm' print "b =", b, '+/-', b_var**.5, 'mm/(rad/s)' #Replot plt.clf() plt.errorbar(vel_rev, disp, yerr=disp_var_new**.5, fmt='b.') plt.xlabel("Rotational Velocity (rev/s)", fontsize=fs) plt.ylabel("Displacement (mm)", fontsize=fs) plt.plot(vel_rev, a+b*vel_rad, 'blue') #plt.show() plt.savefig('data_with_fit.png') #Check that velocity errors are safe to neglect x_err = 6*np.pi #estimated error in rad/s y_err_indirect = b*x_err print 'displacement error due to velocity error', y_err_indirect, 'mm' #Estimate Speed of Light L1=930. L2=613. fL1=48. MR=132. #error 5. D=4870. #error 20 A=L1-L2-fL1 B=L2-MR print 'A =', A, 'mm' print 'B =', B, 'mm' c= 4*A*D**2/b/(D+B) print "c = %.5f x 10^8 m/s" % (c/1e11) #error dc_b = c/b*b_var**.5 print "sigma_c due to b error = %.5f x 10^8 m/s" % (dc_b/1e11)
Expected Output:
velocities [ 100.5 351. 600.5 849. 1099.5 -99.5 -349.5 -600. -850. -1100. ] displacements [ 11.925 11.9535 11.981 12.0025 12.03 11.9075 11.8815 11.8575 11.838 11.8095] a = 11.9185850459 +/- 1.50210913346e-06 mm b = 1.58667545642e-05 +/- 1.26028529539e-07 mm/(rad/s) Chi-sq = 16.0709045274 for 8 degrees of freedom PTE = 0.0413764210529 Adjusted quantities New displacement error 0.00247122372129 mm a = 11.9185850459 +/- 2.1290048651e-06 mm b = 1.58667545642e-05 +/- 1.78625738005e-07 mm/(rad/s) displacement error due to velocity error 0.000299081277452 mm A = 269.0 mm B = 481.0 mm c = 3.00571 x 10^8 m/s sigma_c due to b error = 0.03384 x 10^8 m/s