Image Processing: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Back to [[2014]] | |||
If you run this python script in a file with *.tiff images, it will | If you run this python script in a file with *.tiff images, it will | ||
Revision as of 19:52, 15 February 2014
Back to 2014
If you run this python script in a file with *.tiff images, it will
- Convert images to grayscale and invert them (so particles are light instead of dark)
- Subtract a common background computed using the median of the images
- Smooth the images to remove artifacts and accentuate particles
- Apply an intensity threshold to to background subtracted, smoothed image to identify particles
- Write out particle locations (in pixel units) and particle size (# of pixels) for each particle detected
There is an initial calibration factor "cal", which you'll want to set to your calibration in order to have plots calibrated in microns. Set "cal=1" for plotting in pixel units. You may find parts of this code useful for making your own plots.
Another adjustable parameter is "threshold", which determines the intensity level above which a pixel is considered part of a particle. Consult the output pixel_histogram.png to check that this is sensibly set.
Version 1.1 (Added fontsize option for axis label size)
import numpy as np import pylab as plt from scipy import misc, ndimage from glob import glob cal=0.167 # calibration microns per pixel (used for images, not *.txt output) #Threshold for intensity when counting a pixel as part of a particle #From pixel_histogram.png it looks like real particles have intensity >40 threshold=40 fs = 16 #Fontsize for labels #Read in image #example = '20140130_224916' first_tiff = glob('*.tiff')[0] # Get first file example = first_tiff.split('.')[0] # Remove tiff bmi = misc.imread('%s.tiff' % example) #print type(bmi) print bmi.shape, bmi.dtype #Convert to grayscale def rgb2gray(rgb): #This function converts rgb images to grayscale r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray bmi = -rgb2gray(bmi) #Negative inverts image #print bmi.shape ny = bmi.shape[0] nx = bmi.shape[1] #Plot and save image plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted.png' % example) plt.clf() #clear figure #read in all the images filelist = glob('*.tiff') #Finds all files with .tiff in working directory #print filelist bmis=[] #list of images for filename in filelist: im=misc.imread(filename) bmis.append(-rgb2gray(im)) plt.imshow(bmis[-1],cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted.png' % (filename.split('.')[0])) #Compute background by finding the median intensity value for each pixel background = np.median(bmis,axis=0) plt.imshow(background,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('background.png') plt.clf() #Subtract background bmi=bmi-background plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted.png' % example) plt.clf() for i in range(len(bmis)): bmis[i] = bmis[i]-background #Smooth to particle size bmi = ndimage.uniform_filter(bmi, size=7) plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed.png' % example) plt.clf() for i in range(len(bmis)): bmis[i] = ndimage.uniform_filter(bmis[i], size=5) #Choose threshold for particles plt.hist(bmi.ravel(), bins=100) plt.xlabel('Intensity') plt.ylabel('# of Pixels') ax=plt.gca() ax.set_yscale('log') plt.savefig('pixel_histogram.png') plt.clf() #From histogram looks like real particles have brightness higher than 40 #Create binary images: '1' if intensity is greater than 40, '0' otherwise inds = np.where(bmi>threshold) bmi = np.zeros(bmi.shape) bmi[inds]=1. plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed_threshold.png' % example) plt.clf() for i in range(len(bmis)): inds = np.where(bmis[i]>threshold) bmis[i] = np.zeros(bmi.shape) bmis[i][inds] = 1. plt.imshow(bmis[i],cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed_threshold.png' % (filelist[i].split('.')[0])) plt.clf() #Find particles #The label function find groups of contiguous pixels with '1' values #It returns an array 'labels', in which the '1' values are replaced with #distinct integers for each group # # Example, lets say there is a 1D array: '0,1,1,0,1,0,1,1,1' # The labels output would be '0,1,1,0,2,0,3,3,3' # labels, num = ndimage.measurements.label(bmi) print "Found %d particles." % num for i in range(num): inds = np.where(labels==i+1) #get indices corresponding to (i+1)th particle print i, inds[0].mean(), inds[1].mean(), len(inds[0]) for i in range(len(bmis)): labels, num = ndimage.measurements.label(bmis[i]) print "Found %d particles in %s" % (num, filelist[i]) particles = [] for j in range(num): inds = np.where(labels==j+1) particles.append([inds[0].mean(), inds[1].mean(), len(inds[0])]) np.savetxt("%s.txt" % (filelist[i].split('.')[0]), particles)
Version 1.0 (Original)
import numpy as np import pylab as plt from scipy import misc, ndimage from glob import glob cal=0.167 # calibration microns per pixel (used for images, not *.txt output) #Threshold for intensity when counting a pixel as part of a particle #From pixel_histogram.png it looks like real particles have intensity >40 threshold=40 fs = 16 #Fontsize for axis labels #Read in image #example = '20140130_224916' first_tiff = glob('*.tiff')[0] # Get first file example = first_tiff.split('.')[0] # Remove tiff bmi = misc.imread('%s.tiff' % example) #print type(bmi) print bmi.shape, bmi.dtype #Convert to grayscale def rgb2gray(rgb): #This function converts rgb images to grayscale r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray bmi = -rgb2gray(bmi) #Negative inverts image #print bmi.shape ny = bmi.shape[0] nx = bmi.shape[1] #Plot and save image plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted.png' % example) plt.clf() #clear figure #read in all the images filelist = glob('*.tiff') #Finds all files with .tiff in working directory #print filelist bmis=[] #list of images for filename in filelist: im=misc.imread(filename) bmis.append(-rgb2gray(im)) plt.imshow(bmis[-1],cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted.png' % (filename.split('.')[0])) #Compute background by finding the median intensity value for each pixel background = np.median(bmis,axis=0) plt.imshow(background,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('background.png') plt.clf() #Subtract background bmi=bmi-background plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted.png' % example) plt.clf() for i in range(len(bmis)): bmis[i] = bmis[i]-background #Smooth to particle size bmi = ndimage.uniform_filter(bmi, size=7) plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed.png' % example) plt.clf() for i in range(len(bmis)): bmis[i] = ndimage.uniform_filter(bmis[i], size=5) #Choose threshold for particles plt.hist(bmi.ravel(), bins=100) plt.xlabel('Intensity') plt.ylabel('# of Pixels') ax=plt.gca() ax.set_yscale('log') plt.savefig('pixel_histogram.png') plt.clf() #From histogram looks like real particles have brightness higher than 40 #Create binary images: '1' if intensity is greater than 40, '0' otherwise inds = np.where(bmi>threshold) bmi = np.zeros(bmi.shape) bmi[inds]=1. plt.imshow(bmi,cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed_threshold.png' % example) plt.clf() for i in range(len(bmis)): inds = np.where(bmis[i]>threshold) bmis[i] = np.zeros(bmi.shape) bmis[i][inds] = 1. plt.imshow(bmis[i],cmap=plt.cm.gray, extent=[0,nx*cal,0,ny*cal], aspect='auto' ) plt.ylabel(r'y ($\mu$m)', fontsize=fs) plt.xlabel(r'x ($\mu$m)', fontsize=fs) plt.savefig('%s_grayscale_inverted_bgsubtracted_smoothed_threshold.png' % (filelist[i].split('.')[0])) plt.clf() #Find particles #The label function find groups of contiguous pixels with '1' values #It returns an array 'labels', in which the '1' values are replaced with #distinct integers for each group # # Example, lets say there is a 1D array: '0,1,1,0,1,0,1,1,1' # The labels output would be '0,1,1,0,2,0,3,3,3' # labels, num = ndimage.measurements.label(bmi) print "Found %d particles." % num for i in range(num): inds = np.where(labels==i+1) #get indices corresponding to (i+1)th particle print i, inds[0].mean(), inds[1].mean(), len(inds[0]) for i in range(len(bmis)): labels, num = ndimage.measurements.label(bmis[i]) print "Found %d particles in %s" % (num, filelist[i]) particles = [] for j in range(num): inds = np.where(labels==j+1) particles.append([inds[0].mean(), inds[1].mean(), len(inds[0])]) np.savetxt("%s.txt" % (filelist[i].split('.')[0]), particles)