Step Linking: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
image_height=1200 | image_height=1200 | ||
min_pix = 40 #minimum number of pixels a particle must have | min_pix = 40 #minimum number of pixels a particle must have | ||
max_dist = | max_dist = 60 #particle association radius (pixel units) | ||
max_pix_diff = 10 #maximum difference in pixel count in particle association | max_pix_diff = 10 #maximum difference in pixel count in particle association | ||
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers) | max_num_steps = 120 #maximum number of steps to find (b/f removing outliers) | ||
#maximum dx or dy allowed for step consult xy_step_histogram.png & variance | |||
#calculation. For ~100 steps a 3.5 sigma cut seems reasonable. | |||
outlier_threshold = 35 | |||
# | |||
#Read in the particle locations and pixel count for all images | |||
filelist = glob('*.txt') | filelist = glob('*.txt') | ||
particle_lists=[] #list of lists for all images | particle_lists=[] #list of lists for all images |
Revision as of 03:33, 10 February 2014
This python script reads in the lists of particles for each image generated by the python image processing step and outputs a list of steps in "steps.txt" and also images of the particle associations in each step between figures in "match*.png".
# -*- coding: utf-8 -*- import numpy as np import pylab as plt from glob import glob #Adjustable parameters: image_width=1600 image_height=1200 min_pix = 40 #minimum number of pixels a particle must have max_dist = 60 #particle association radius (pixel units) max_pix_diff = 10 #maximum difference in pixel count in particle association max_num_steps = 120 #maximum number of steps to find (b/f removing outliers) #maximum dx or dy allowed for step consult xy_step_histogram.png & variance #calculation. For ~100 steps a 3.5 sigma cut seems reasonable. outlier_threshold = 35 #Read in the particle locations and pixel count for all images filelist = glob('*.txt') particle_lists=[] #list of lists for all images for filename in filelist: particle_lists.append(np.loadtxt(filename)) dx = [] dy = [] for i in range(len(particle_lists)-1): print "Processing steps between %s and %s." % (filelist[i], filelist[i+1]) for p1 in particle_lists[i]: displacements = [] if p1[2] < min_pix: #Skip if pixels in p1 are too few continue for p2 in particle_lists[i+1]: if p2[2] <= min_pix: #Skip if pixels in p2 are too few continue if abs(p1[2]-p2[2])>max_pix_diff: continue dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2) if dist <= max_dist: # Are p1 and p2 associated? displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])]) #Veto p1 if it has no associations or if it has more than one if len(displacements)==0 or len(displacements) > 1: #print displacements continue #Otherwise we've found a good association! Record the displacements. dy.append(displacements[0][0]) dx.append(displacements[0][1]) plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])]) plt.xlim([0,image_width]) plt.ylim([0,image_height]) if len(dx)>max_num_steps: #Stop after we have 100 break if len(dx)>max_num_steps: #Stop after we have 100 break plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0])) plt.clf() plt.clf() #Convert from list type to numpy array and calibrate dx = np.array(dx) dy = np.array(dy) print "Standard deviation in dx:", dx.std() print "Standard deviation in dy:", dy.std() #Plot histograms plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x') plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y') plt.xlabel('Distance (pixels)') plt.legend() plt.savefig('xy_step_histogram.png') plt.clf() #Remove outlier steps: require dx AND dy be less than outlier threshold inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold)) dx = dx[inds] dy = dy[inds] print "%d steps remain after outlier cut." % len(dx) #Write out steps: np.savetxt('steps.txt', np.array([dx,dy]).transpose())