Step Linking: Difference between revisions

From Advanced Labs Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
This python script reads in the lists of particles for each image generated by the python image processing step and outputs a list of steps in "steps.txt" and also images of the particle associations in each step between figures in "match*.png".
Back to [[2014]].
 
This python script reads in the lists of particles for each image generated by the python image processing step and outputs a list of steps in "steps.txt" and also images of the particle associations, in pixel units, in each step between figures in "match*.png". In version 1.1, the match.png has color coding to show which steps are marked as outliers, to enable checking of whether they are misindentified steps or actual steps. Also the associations are labeled so you can match them to the steps.txt list.
 
----
 
Version 1.11 (No longer reads in steps.txt together with data)
 
<pre>
# -*- coding: utf-8 -*-
import numpy as np
import pylab as plt
from glob import glob
import os
 
#Adjustable parameters:
image_width=1600
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.
 
 
#Read in the particle locations and pixel count for all images
filelist = np.array(glob('[!steps]*.txt'))
print filelist
filtelist = filelist[inds]
particle_lists=[] #list of lists for all images
for filename in filelist:
    particle_lists.append(np.loadtxt(filename))
dx = []
dy = []
 
nparticles=0
for i in range(len(particle_lists)-1):
    matches = []
    print "Processing steps between %s and %s." % (filelist[i], filelist[i+1])
    for p1 in particle_lists[i]:
        displacements = []
        diffs = []
        p2s = []
        if p1[2] < min_pix: #Skip if pixels in p1 are too few
            continue
        for p2 in particle_lists[i+1]:
            if p2[2] <= min_pix: #Skip if pixels in p2 are too few
                continue
            dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
            if dist <= max_dist: # Are p1 and p2 associated?
                displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])])
                diffs.append(abs(p1[2]-p2[2]))
                p2s.append(p2)
       
        #Veto p1 if it has no associations or if it has more than one
        if len(displacements)==0 or len(displacements) > 1:
            #print displacements
            continue
        if diffs[0] > max_pix_diff:
            continue
       
        #If the particle 2 has already been matched to another p1 veto both p1s
        double_match=False
        for k in range(len(matches)):
            if (p2s[0][0] == matches[k][0]) and (p2s[0][1] == matches[k][1]):
                matches.pop(k)
                double_match=True
                break
        if double_match: continue
       
        #Otherwise we've found a good association! Record the displacements.
        matches.append(p2s[0])
        dy.append(displacements[0][0])
        dx.append(displacements[0][1])
       
        #Plot the association in a scatter plot "matches*.png"
        dist = np.sqrt(displacements[0][0]**2 + displacements[0][1]**2)
        if dist < outlier_threshold:
            nparticles+=1
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.text(p1[1]+5, image_height- p1[0]+5, "%d" % nparticles)
        else: #Plot outliers but don't number them b/c we want to reference the output list from the figure
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
        plt.xlim([0,image_width])
        plt.ylim([0,image_height])
        if len(dx)>max_num_steps: #Stop after we have 100
            break
    plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0]))
    plt.clf()
    if len(dx)>max_num_steps: #Stop after we have 100
        break
   
#Convert from list type to numpy array and calibrate
dx = np.array(dx)
dy = np.array(dy)
 
print "Standard deviation in dx:", dx.std()
print "Standard deviation in dy:", dy.std()
 
#Plot histograms
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.clf()
 
#Remove outlier steps: require dx AND dy be less than outlier threshold
inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold))
dx = dx[inds]
dy = dy[inds]
print "%d steps remain after outlier cut." % len(dx)
print "New standard deviation in dx:", dx.std()
print "New standard deviation in dy:", dy.std()
 
 
#Write out steps:
np.savetxt('steps.txt', np.array([dx,dy]).transpose())
</pre>
 
----
 
Version 1.1 (Some improvements and bug fixes pertaining to particular cases of user input.)
 
<pre>
# -*- coding: utf-8 -*-
import numpy as np
import pylab as plt
from glob import glob
 
#Adjustable parameters:
image_width=1600
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.
 
 
#Read in the particle locations and pixel count for all images
filelist = glob('*.txt')
particle_lists=[] #list of lists for all images
for filename in filelist:
    particle_lists.append(np.loadtxt(filename))
   
dx = []
dy = []
 
nparticles=0
for i in range(len(particle_lists)-1):
    matches = []
    print "Processing steps between %s and %s." % (filelist[i], filelist[i+1])
    for p1 in particle_lists[i]:
        displacements = []
        diffs = []
        p2s = []
        if p1[2] < min_pix: #Skip if pixels in p1 are too few
            continue
        for p2 in particle_lists[i+1]:
            if p2[2] <= min_pix: #Skip if pixels in p2 are too few
                continue
            dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
            if dist <= max_dist: # Are p1 and p2 associated?
                displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])])
                diffs.append(abs(p1[2]-p2[2]))
                p2s.append(p2)
       
        #Veto p1 if it has no associations or if it has more than one
        if len(displacements)==0 or len(displacements) > 1:
            #print displacements
            continue
        if diffs[0] > max_pix_diff:
            continue
       
        #If the particle 2 has already been matched to another p1 veto both p1s
        double_match=False
        for k in range(len(matches)):
            if (p2s[0][0] == matches[k][0]) and (p2s[0][1] == matches[k][1]):
                matches.pop(k)
                double_match=True
                break
        if double_match: continue
       
        #Otherwise we've found a good association! Record the displacements.
        matches.append(p2s[0])
        dy.append(displacements[0][0])
        dx.append(displacements[0][1])
       
        #Plot the association in a scatter plot "matches*.png"
        dist = np.sqrt(displacements[0][0]**2 + displacements[0][1]**2)
        if dist < outlier_threshold:
            nparticles+=1
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.text(p1[1]+5, image_height- p1[0]+5, "%d" % nparticles)
        else: #Plot outliers but don't number them b/c we want to reference the output list from the figure
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
        plt.xlim([0,image_width])
        plt.ylim([0,image_height])
        if len(dx)>max_num_steps: #Stop after we have 100
            break
    plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0]))
    plt.clf()
    if len(dx)>max_num_steps: #Stop after we have 100
        break
   
#Convert from list type to numpy array and calibrate
dx = np.array(dx)
dy = np.array(dy)
 
print "Standard deviation in dx:", dx.std()
print "Standard deviation in dy:", dy.std()
 
#Plot histograms
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.clf()
 
#Remove outlier steps: require dx AND dy be less than outlier threshold
inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold))
dx = dx[inds]
dy = dy[inds]
print "%d steps remain after outlier cut." % len(dx)
print "New standard deviation in dx:", dx.std()
print "New standard deviation in dy:", dy.std()
 
 
#Write out steps:
np.savetxt('steps.txt', np.array([dx,dy]).transpose())
</pre>
 
----
 
Version 1.0 (Original version)


<pre>
<pre>
# -*- coding: utf-8 -*-
import numpy as np
import numpy as np
import pylab as plt
import pylab as plt
Line 10: Line 255:
image_height=1200
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 50 #particle association radius (pixel units)
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 40 #maximum dx or dy allowed for step consult xy_step_histogram.png
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.
 


#read in the particle locations and pixel count for all images
#Read in the particle locations and pixel count for all images
filelist = glob('*.txt')
filelist = glob('*.txt')
particle_lists=[] #list of lists for all images
particle_lists=[] #list of lists for all images
Line 45: Line 293:
         dy.append(displacements[0][0])
         dy.append(displacements[0][0])
         dx.append(displacements[0][1])
         dx.append(displacements[0][1])
        #Plot the association in a scatter plot "matches*.png"
         plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])])
         plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])])
         plt.xlim([0,image_width])
         plt.xlim([0,image_width])
Line 66: Line 315:
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel(r'Distance ($\mu$m)')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.savefig('xy_step_histogram.png')

Latest revision as of 02:11, 18 February 2014

Back to 2014.

This python script reads in the lists of particles for each image generated by the python image processing step and outputs a list of steps in "steps.txt" and also images of the particle associations, in pixel units, in each step between figures in "match*.png". In version 1.1, the match.png has color coding to show which steps are marked as outliers, to enable checking of whether they are misindentified steps or actual steps. Also the associations are labeled so you can match them to the steps.txt list.


Version 1.11 (No longer reads in steps.txt together with data)

# -*- coding: utf-8 -*-
import numpy as np
import pylab as plt
from glob import glob
import os

#Adjustable parameters:
image_width=1600
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.


#Read in the particle locations and pixel count for all images
filelist = np.array(glob('[!steps]*.txt'))
print filelist
filtelist = filelist[inds]
particle_lists=[] #list of lists for all images
for filename in filelist:
    particle_lists.append(np.loadtxt(filename))
dx = []
dy = []

nparticles=0
for i in range(len(particle_lists)-1):
    matches = []
    print "Processing steps between %s and %s." % (filelist[i], filelist[i+1])
    for p1 in particle_lists[i]:
        displacements = []
        diffs = []
        p2s = []
        if p1[2] < min_pix: #Skip if pixels in p1 are too few
            continue
        for p2 in particle_lists[i+1]:
            if p2[2] <= min_pix: #Skip if pixels in p2 are too few
                continue
            dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
            if dist <= max_dist: # Are p1 and p2 associated?
                displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])])
                diffs.append(abs(p1[2]-p2[2]))
                p2s.append(p2)
        
        #Veto p1 if it has no associations or if it has more than one
        if len(displacements)==0 or len(displacements) > 1:
            #print displacements
            continue
        if diffs[0] > max_pix_diff:
            continue
        
        #If the particle 2 has already been matched to another p1 veto both p1s
        double_match=False
        for k in range(len(matches)):
            if (p2s[0][0] == matches[k][0]) and (p2s[0][1] == matches[k][1]):
                matches.pop(k)
                double_match=True
                break
        if double_match: continue
        
        #Otherwise we've found a good association! Record the displacements.
        matches.append(p2s[0])
        dy.append(displacements[0][0])
        dx.append(displacements[0][1])
        
        #Plot the association in a scatter plot "matches*.png"
        dist = np.sqrt(displacements[0][0]**2 + displacements[0][1]**2) 
        if dist < outlier_threshold:
            nparticles+=1
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.text(p1[1]+5, image_height- p1[0]+5, "%d" % nparticles)
        else: #Plot outliers but don't number them b/c we want to reference the output list from the figure
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
        plt.xlim([0,image_width])
        plt.ylim([0,image_height])
        if len(dx)>max_num_steps: #Stop after we have 100
            break
    plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0]))
    plt.clf()
    if len(dx)>max_num_steps: #Stop after we have 100
        break
    
#Convert from list type to numpy array and calibrate
dx = np.array(dx)
dy = np.array(dy)

print "Standard deviation in dx:", dx.std()
print "Standard deviation in dy:", dy.std()

#Plot histograms
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.clf()

#Remove outlier steps: require dx AND dy be less than outlier threshold
inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold))
dx = dx[inds]
dy = dy[inds]
print "%d steps remain after outlier cut." % len(dx)
print "New standard deviation in dx:", dx.std()
print "New standard deviation in dy:", dy.std()


#Write out steps:
np.savetxt('steps.txt', np.array([dx,dy]).transpose())

Version 1.1 (Some improvements and bug fixes pertaining to particular cases of user input.)

# -*- coding: utf-8 -*-
import numpy as np
import pylab as plt
from glob import glob

#Adjustable parameters:
image_width=1600
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.


#Read in the particle locations and pixel count for all images
filelist = glob('*.txt')
particle_lists=[] #list of lists for all images
for filename in filelist:
    particle_lists.append(np.loadtxt(filename))
    
dx = []
dy = []

nparticles=0
for i in range(len(particle_lists)-1):
    matches = []
    print "Processing steps between %s and %s." % (filelist[i], filelist[i+1])
    for p1 in particle_lists[i]:
        displacements = []
        diffs = []
        p2s = []
        if p1[2] < min_pix: #Skip if pixels in p1 are too few
            continue
        for p2 in particle_lists[i+1]:
            if p2[2] <= min_pix: #Skip if pixels in p2 are too few
                continue
            dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
            if dist <= max_dist: # Are p1 and p2 associated?
                displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])])
                diffs.append(abs(p1[2]-p2[2]))
                p2s.append(p2)
        
        #Veto p1 if it has no associations or if it has more than one
        if len(displacements)==0 or len(displacements) > 1:
            #print displacements
            continue
        if diffs[0] > max_pix_diff:
            continue
        
        #If the particle 2 has already been matched to another p1 veto both p1s
        double_match=False
        for k in range(len(matches)):
            if (p2s[0][0] == matches[k][0]) and (p2s[0][1] == matches[k][1]):
                matches.pop(k)
                double_match=True
                break
        if double_match: continue
        
        #Otherwise we've found a good association! Record the displacements.
        matches.append(p2s[0])
        dy.append(displacements[0][0])
        dx.append(displacements[0][1])
        
        #Plot the association in a scatter plot "matches*.png"
        dist = np.sqrt(displacements[0][0]**2 + displacements[0][1]**2) 
        if dist < outlier_threshold:
            nparticles+=1
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='blue')
            plt.text(p1[1]+5, image_height- p1[0]+5, "%d" % nparticles)
        else: #Plot outliers but don't number them b/c we want to reference the output list from the figure
            plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
            plt.plot([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])], color='red')
        plt.xlim([0,image_width])
        plt.ylim([0,image_height])
        if len(dx)>max_num_steps: #Stop after we have 100
            break
    plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0]))
    plt.clf()
    if len(dx)>max_num_steps: #Stop after we have 100
        break
    
#Convert from list type to numpy array and calibrate
dx = np.array(dx)
dy = np.array(dy)

print "Standard deviation in dx:", dx.std()
print "Standard deviation in dy:", dy.std()

#Plot histograms
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.clf()

#Remove outlier steps: require dx AND dy be less than outlier threshold
inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold))
dx = dx[inds]
dy = dy[inds]
print "%d steps remain after outlier cut." % len(dx)
print "New standard deviation in dx:", dx.std()
print "New standard deviation in dy:", dy.std()


#Write out steps:
np.savetxt('steps.txt', np.array([dx,dy]).transpose())

Version 1.0 (Original version)

# -*- coding: utf-8 -*-
import numpy as np
import pylab as plt
from glob import glob

#Adjustable parameters:
image_width=1600
image_height=1200
min_pix = 40 #minimum number of pixels a particle must have
max_dist = 60 #particle association radius (pixel units)
max_pix_diff = 10 #maximum difference in pixel count in particle association
max_num_steps = 120 #maximum number of steps to find (b/f removing outliers)
outlier_threshold = 35 #maximum dx or dy allowed for step consult ...
    # xy_step_histogram.png & variance calculation. ...
    # For ~100 steps a 3.5 sigma cut seems reasonable.


#Read in the particle locations and pixel count for all images
filelist = glob('*.txt')
particle_lists=[] #list of lists for all images
for filename in filelist:
    particle_lists.append(np.loadtxt(filename))
    
dx = []
dy = []

for i in range(len(particle_lists)-1):
    print "Processing steps between %s and %s." % (filelist[i], filelist[i+1])
    for p1 in particle_lists[i]:
        displacements = []
        if p1[2] < min_pix: #Skip if pixels in p1 are too few
            continue
        for p2 in particle_lists[i+1]:
            if p2[2] <= min_pix: #Skip if pixels in p2 are too few
                continue
            if abs(p1[2]-p2[2])>max_pix_diff:
                continue
            dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
            if dist <= max_dist: # Are p1 and p2 associated?
                displacements.append([(p1[0]-p2[0]),(p1[1]-p2[1])])
        #Veto p1 if it has no associations or if it has more than one
        if len(displacements)==0 or len(displacements) > 1:
            #print displacements
            continue
        #Otherwise we've found a good association! Record the displacements.
        dy.append(displacements[0][0])
        dx.append(displacements[0][1])
        #Plot the association in a scatter plot "matches*.png"
        plt.scatter([p1[1], (p1[1]-dx[-1])], [image_height- p1[0],image_height-(p1[0]-dy[-1])])
        plt.xlim([0,image_width])
        plt.ylim([0,image_height])
        if len(dx)>max_num_steps: #Stop after we have 100
            break
    if len(dx)>max_num_steps: #Stop after we have 100
        break
    plt.savefig('matches_%s_%s.png' % (filelist[i].split('.')[0],filelist[i+1].split('.')[0]))
    plt.clf()
plt.clf()
    
#Convert from list type to numpy array and calibrate
dx = np.array(dx)
dy = np.array(dy)

print "Standard deviation in dx:", dx.std()
print "Standard deviation in dy:", dy.std()

#Plot histograms
plt.hist(dx, bins=15, range=[-max_dist,max_dist], histtype='step', color='blue', label=r'$\Delta$x')
plt.hist(dy, bins=15, range=[-max_dist,max_dist], histtype='step', color='red', label=r'$\Delta$y')
plt.xlabel('Distance (pixels)')
plt.legend()
plt.savefig('xy_step_histogram.png')
plt.clf()

#Remove outlier steps: require dx AND dy be less than outlier threshold
inds = np.where((abs(dx)<outlier_threshold)*(abs(dy)<outlier_threshold))
dx = dx[inds]
dy = dy[inds]
print "%d steps remain after outlier cut." % len(dx)

#Write out steps:
np.savetxt('steps.txt', np.array([dx,dy]).transpose())