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1 Errors

1.1 Errors on Raw Data

1.1.1 Counts

In some experiments, the data are counts. For instance in the classical Rutherford exper-
iment, alpha particles were counted. When studying nuclear processes, product gamma
rays may be counted. When studying galaxy populations, you may bin (count) galaxies in
brightnesses intervals. In these cases, the data follow Poisson statistics: for a given count N,
σ2

N = N .

2 Linear Modeling

Let ~d be an n-long vector of data that we model with a linear model M~p, where vecp is an
m-long vector of parameters and M is an n×m projection matrix which oper parameters p
into the data space. Furthermore, let the noise covariance matrix N be an n × n diagonal
matrix with the data’s variance ~σ2 on the diagonal:

N =







σ2

1
0

. . .

0 σ2

n






. (1)

The goodness of fit for this model is evaluated using the chi-squared statistic:

χ2(~p) = (~d−M~p)TN−1(~d−M~p) =
∑

i

(di − [M~p]i)
2

σ2

i

(2)

The quantity is ~d−M~p is called the “residual”. The chi-squared statistic is the square of this
residual over the variance. As the sum in Eq 2 suggests, for properly estimated errors σ2

i , a
good fit minimizes chi-squared and has a value close to n, the so-called number of “degrees
of freedom”.

In order to minimize the chi-squared with respect to the linear model parameters, we
simply set the derivative of Eq 2 with respect to these parameters to zero:

dχ

d~p
= 2MTN−1(~d−M~p) = 0

~p = (MTN−1M)−1MTN−1~d (3)
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3 Non-linear Modeling

To interpret a dataset with measurements {di}, we have a model which, given n model
parameters ~p, gives corresponding values {mi(~p)} . The chi-squared for this model is

χ2(~p) =
∑

i

[di −mi(~p)]
2

σ2

i

, (4)

where σ2

i is the estimate for the variance on di.
The errors on di are assumed uncorrelated. For linear models, the chi-squared function

was a quadratic in the parameters, so we can write

χ2(~p) = χ2(~p0) +
dχ2

d~p
(~p0)(~p− ~p0) +

1

2
(~p− ~p0)

T d
2χ2

d2~p
(~p0)(~p− ~p0), (5)

where ~p0 is an arbitrary starting point in parameter space. The minimizing “jump” in
parameter space, δ~p = ( ~pmin − ~p0), is given by

0 =
dχ2

d~p
(~p0) +

d2χ2

d2~p
(~p0)δ~p

δ~p = −
(

d2χ2

d2~p
(~p0)

)

−1
dχ2

d~p
(~p0) (6)

Note that in general the first derivative of chi-squared is a vector (the gradient), and the
second derivative is a matrix (the hessian).

Many times, however, the chi-squared function is not purely quadratic. This is the case
for non-linear models. In these cases, the above prescription for a purely quadratic function
can fail. In these cases, we must follow our nose, potentially taking many steps around
parameter space to find the minimum of the chi-squared. One easy prescription is to follow
the gradient of chi-squared. The step in parameter space is then

δ~p = −~C
dχ2

d~p
(~p0), (7)

where ~C is a constant vector of length n (same as ~p). In general, we can use both step
formulae (Eq 6 and Eq 7) to explore the parameter space in search of the best fit values.

3.1 Gradient and Hessian

The next step towards an algorithm for non-linear model fitting is constructing the gradient
vector and hessian matrix of the chi-squared function (Eq 4).The gradient is straight forward.
The jth element of this vector is

∂χ2

∂pj
(~p0) = −2

∑

i

[di −mi(~p0)]

σ2

i

(

∂mi

∂pj
(~p0)

)

. (8)

And the (j, k)th element of the hessian is

∂2χ2

∂pj∂pk
(~p0) = −2

∑

i

σ−2

i

(

∂mi

∂pj
(~p0)

)(

∂mi

∂pk
(~p0)

)

+
[di −mi(~p0)]

σ2

i

(

∂2mi

∂pj∂pk
(~p0)

)

≈ −2
∑

i

σ−2

i

(

∂mi

∂pj
(~p0)

)(

∂mi

∂pk
(~p0)

)

. (9)
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The second term in the sum on the first line tends to cancel out for a good model near
the chi-squared minimum: the quantity di −mi(~p0) will be randomly positive and negative
across di such that its sum over i should be small (Why isn’t this the case for Eq 8? My
hypothesis is that both of these terms are small near the minimum and it is the first term in
the hessian which drives the final steps of the search.). The second term is also supposedly
a numerical nuisance, so we drop it for the effective expression of the hessian.

3.2 Levenburg-Marquardt

The final step towards solving a non-linear least squares system is providing a prescription
for stepping through parameter space and in particular choosing the constant in Eq 7. The
Levenberg-Marquardt approach is the classic way to do this [1]. In this approach the constant
for gradient decent is chosen to be proportional to the inverse of the second derivative with
respect to the parameter in question. Following this prescription, Eq 6 and Eq 7 can be
written

−







∂2χ2

∂p1∂p1
. . . ∂2χ2

∂p1∂pn
...

. . .
...

∂2χ2

∂pn∂p1
. . . ∂2χ2

∂pn∂pn













δp1
...

δpn






=







∂χ2

∂p1
...

∂χ2

∂pn






, (10)

λ







∂2χ2

∂p1∂p1
0

. . .

0 ∂2χ2

∂p1∂p1













δp1
...

δpn






=







∂χ2

∂p1
...

∂χ2

∂pn






, (11)

where λ is a constant. Eq 10 and Eq 11 specify, respectively, the quadratic (Eq 6) and
gradient (Eq 7) contributions to δ~p. These equations can be rewritten as a single operation
on the gradient







δp1
...

δpn






=













∂2χ2

∂p1∂p1
(−1 + λ) . . . ∂2χ2

∂p1∂pn
...

. . .
...

∂2χ2

∂pn∂p1
. . . ∂2χ2

∂pn∂pn
(−1 + λ)













−1 





∂χ2

∂p1
...

∂χ2

∂pn






, (12)

Setting the matrix on the right hand side to α(~p, λ), the expression simplifies to

δ~p = α(~p, λ)−1 ▽p χ
2. (13)

As a prescription for choosing λ and stepping around parameter space, here is a suggestion
from the ever useful Numerical Recipes books [2]

1. Solve Eq 13 for δ~p.

2. If χ2(~p+ δ~p) > χ2(~p), do not set ~p = ~p+ δ~p (reject the step) and increase λ by a factor
of 10. Return to start.

3. If χ2(~p+ δ~p) < χ2(~p), set ~p = ~p+ δ~p and decrease λ by a factor of 10. Return to start.

You stop iterating this sequence when the quantity χ2(~p + δ~p) − χ2(~p) is significantly less
than one.
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3.3 Error Propagation

Let the variance on a dataset {di} (n long) be given by {σ2

i }. The variance of a function of
the data p({di}) is given by

σ2

p =
∑

i

∣

∣

∣

∣

∂p

∂di

∣

∣

∣

∣

2

σ2

i (14)

A corollary of this is that, for functions linear in {di}, the fractional variance (σ2

p/p
2) of the

function is the quadrature sum of the fractional variance of the data. This is corollary does
not hold for non-linear functions.

Eq 14 can be written in vector form as

σ2

p = ~▽dp ·N · ~▽dp, (15)

where N is given by Eq 1. More generally we can define the covariance matrix of a set of m
dependent variables (e.g., model parameters) as

C = ~▽d~p ·N · ~▽d~p (16)

where ~▽d~p has dimensions of (n×m). Referring to Eq 3 for an expression for ~p, the covariance
matrix takes the form

C = (MTN−1M)−1. (17)

This expression can be directly related to the Hessian of the chi-squared in Eq 2:

dχ2

d2~p
= 2MTN−1M ≡ 2α. (18)

Thus half the Hessian (defined here as α) is the inverse of the covariance matrix. For a
non-linear model which is well approximated by linear terms near the minimum of the chi-
squared function, the inverse of the α matrix is the formal covariance. This quantity can be
calculated at the end of a non-linear model fit in order to give errors – it is often returned
by algorithms based on the Levenburg-Marquardt chi-squared minimization.

Generally near the minimum, the chi-squared function can approximated by a second
order function:

∆χ2 = δ~p · α · δ~p (19)

where we have used the definition of the matrix α from Eq 18, ∆χ2 = χ2 − χ2

min and
δ~p = ~p− ~pmin. In order to find the uncertainty in a parameter δp1, we allow this parameter
to take an arbitrary value and minimize over the other parameters. This latter condition
implies that the gradient of χ2 will be zero along directions besides that corresponding to
δp1.

d∆χ2

d~p
= α · δ~p =







c
...
0






(20)

Furthermore, for a single degree of freedom (δp1), the change in chi-square (Eq 19) corre-
sponding to the 68% confidence interval is ∆χ2 = δ~p · α · δ~p = 1. This condition constrains
the value of c in Eq 20 such that

δ~p(68%) = C







1/
√
C11

...
0






, (21)
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Table 1: Chi-squared values corresponding to confidence levels (CL) for various numbers of
degrees of freedom.

C.L. 1 dof 2 dof 3 dof

68% 1.00 2.30 3.53
95.4% 4.00 6.17 8.02

where we have used the identity C = α−1. It then follows that the standard deviation of
parameter p1 is

√
C11.

More generally, one can plot the confidence contours of multiple parameters. Given the
constraints of the printed page, two parameter error ellipses are most frequently used and
provide insight to degeneracy among parameters. For ν parameters, one constructs a ν × ν
sub-covariance matrix by extracting the intersections of rows and columns associated with
the parameters of interested. Then one plots chi-squared contours corresponding to the
appropriate confidence intervals. See Table 1.
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