

Photoelectric Effect h/e Experiment

T. A. Marriage Feb 7, 2011

Photodiode Circuit

Experiment (Cont.)

Photodiode Circuit

$$E_{\Upsilon} = h\nu = eV + W_0$$

Data For Five Colors

Name	Frequency (Hz $\times 10^{15}$)	Output Voltage (V)
Ultraviolet	8.20264	$1.940 \pm 0.005 \ (0.20)$
Purple	7.40858	$1.600 \pm 0.005 \; (0.05)$
Blue	6.87858	$1.395 \pm 0.005 \; (0.02)$
Green	5.48996	$0.805 \pm 0.005 \; (0.02)$
Yellow	5.18672	$0.695 \pm 0.005 \; (0.02)$

Systematic uncertainties derived from difference between one side of diffraction pattern and the other.

Linear Model

$$h\nu = eV + W_0 \tag{1}$$

$$\vec{V}_{model} = a\vec{\nu} + b\vec{1} = \begin{bmatrix} \vec{\nu} & \vec{1} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{M}\vec{x}$$
 (2)

$$\vec{x}_{ML} = (\mathbf{M}^T \mathbf{N}^{-1} \mathbf{M})^{-1} \mathbf{M}^T \mathbf{N}^{-1} \vec{d}$$
 (3)

$$\sigma_{\mathbf{x}} = (\mathbf{M}^T \mathbf{N}^{-1} \mathbf{M})^{-1} \tag{4}$$

To Do

- Understand Systematics
- Study Covariance of Fit Parameters