
Data Reduction Notes

Tobias Marriage

Feb 2011

1 Probability Distributions

Generically, a probability distribution corresponds to a function p(x) which defines the like-
lihood for random variable x. The likelihood that for which the probability of the
random variable falling in a small interval dx centered on the value x0 is p(x0)dx.
The distribution describes the probability density which, when integrated, yields the proba-
bility of x falling between any two values:

P (x ∈ [x0, x1]) =

∫ x1

x0

p(x)dx. (1)

Furthermore the distribution is normalized such that

P (x ∈ [−∞,∞]) =

∫ ∞
−∞

p(x)dx = 1. (2)

The mean µ of the distribution is defined as its first moment 〈x〉,

µ ≡
∫ ∞
−∞

xp(x)dx, (3)

and the variance σ2 of the distribution is defined as its second moment 〈x2〉,

σ2 ≡
∫ ∞
−∞

(x− µ)2p(x)dx. (4)

The probability distributions of course have third moments (skew, 〈x3〉), and fourth moments
(kurtosis, 〈x4〉) which are useful but do not enter the everyday life of the experimenter. The
mean describes the center of the distribution while the variance describes the width of the
distribution. Another important quantity is the standard deviation σ which is the square
root of the variance.

1.1 Gaussian Distribution

The Gaussian (or normal) distribution is the most used distribution in experimental science.
The Gaussian in fully described by a mean µ and a variance σ2. The functional form of the
Gaussian distribution is

p(x;µ, σ) =
1

σ
√

(2π)
exp

[
−1

2

(x− µ)2

σ2

]
. (5)

1

Data Reduction Notes 3 LINEAR MODELING

1.1.1 Standard Gaussian Distribution

By redefining variables z = (x−µ)/σ in Eq 5, we obtain the Standard Gaussian Distribution
(µ = 1, σ = 1):

p(z) =
1

σ
√

(2π)
exp

(
−1

2

z2

σ2

)
. (6)

The ability to define a Standard Gaussian by a simple linear transformation of the random
variable has an significant implication for simulations (see section 6).

2 Errors

2.1 Errors on Raw Data

2.1.1 Counts

In some experiments, the data are counts. For instance in the classical Rutherford exper-
iment, alpha particles were counted. When studying nuclear processes, product gamma
rays may be counted. When studying galaxy populations, you may bin (count) galaxies in
brightnesses intervals. In these cases, the data follow Poisson statistics: for a given count N,
σ2
N = N .

3 Linear Modeling

Let ~d be an n-long vector of data that we model with a linear model M~p, where vecp is an
m-long vector of parameters and M is an n×m projection matrix which oper parameters p
into the data space. Furthermore, let the noise covariance matrix N be an n × n diagonal
matrix with the data’s variance ~σ2 on the diagonal:

N =

σ
2
1 0

. . .

0 σ2
n

 . (7)

The goodness of fit for this model is evaluated using the chi-squared statistic:

χ2(~p) = (~d−M~p)TN−1(~d−M~p) =
∑
i

(di − [M~p]i)
2

σ2
i

(8)

The quantity is ~d−M~p is called the “residual”. The chi-squared statistic is the square of this
residual over the variance. As the sum in Eq 8 suggests, for properly estimated errors σ2

i , a
good fit minimizes chi-squared and has a value close to n, the so-called number of “degrees
of freedom”.

In order to minimize the chi-squared with respect to the linear model parameters, we
simply set the derivative of Eq 8 with respect to these parameters to zero:

dχ

d~p
= 2MTN−1(~d−M~p) = 0

~p = (MTN−1M)−1MTN−1~d (9)

2

Data Reduction Notes 4 NON-LINEAR MODELING

4 Non-linear Modeling

To interpret a dataset with measurements {di}, we have a model which, given n model
parameters ~p, gives corresponding values {mi(~p)} . The chi-squared for this model is

χ2(~p) =
∑
i

[di −mi(~p)]
2

σ2
i

, (10)

where σ2
i is the estimate for the variance on di.

The errors on di are assumed uncorrelated. For linear models, the chi-squared function
was a quadratic in the parameters, so we can write

χ2(~p) = χ2(~p0) +
dχ2

d~p
(~p0)(~p− ~p0) +

1

2
(~p− ~p0)T

d2χ2

d2~p
(~p0)(~p− ~p0), (11)

where ~p0 is an arbitrary starting point in parameter space. The minimizing “jump” in
parameter space, δ~p = (~pmin − ~p0), is given by

0 =
dχ2

d~p
(~p0) +

d2χ2

d2~p
(~p0)δ~p

δ~p = −
(
d2χ2

d2~p
(~p0)

)−1
dχ2

d~p
(~p0) (12)

Note that in general the first derivative of chi-squared is a vector (the gradient), and the
second derivative is a matrix (the hessian).

Many times, however, the chi-squared function is not purely quadratic. This is the case
for non-linear models. In these cases, the above prescription for a purely quadratic function
can fail. In these cases, we must follow our nose, potentially taking many steps around
parameter space to find the minimum of the chi-squared. One easy prescription is to follow
the gradient of chi-squared. The step in parameter space is then

δ~p = −~C dχ
2

d~p
(~p0), (13)

where ~C is a constant vector of length n (same as ~p). In general, we can use both step
formulae (Eq 12 and Eq 13) to explore the parameter space in search of the best fit values.

4.1 Gradient and Hessian

The next step towards an algorithm for non-linear model fitting is constructing the gradi-
ent vector and hessian matrix of the chi-squared function (Eq 10).The gradient is straight
forward. The jth element of this vector is

∂χ2

∂pj
(~p0) = −2

∑
i

[di −mi(~p0)]

σ2
i

(
∂mi

∂pj
(~p0)

)
. (14)

3

Data Reduction Notes 4 NON-LINEAR MODELING

And the (j, k)th element of the hessian is

∂2χ2

∂pj∂pk
(~p0) = −2

∑
i

σ−2i

(
∂mi

∂pj
(~p0)

)(
∂mi

∂pk
(~p0)

)
+

[di −mi(~p0)]

σ2
i

(
∂2mi

∂pj∂pk
(~p0)

)
≈ −2

∑
i

σ−2i

(
∂mi

∂pj
(~p0)

)(
∂mi

∂pk
(~p0)

)
. (15)

The second term in the sum on the first line tends to cancel out for a good model near
the chi-squared minimum: the quantity di −mi(~p0) will be randomly positive and negative
across di such that its sum over i should be small (Why isn’t this the case for Eq 14? My
hypothesis is that both of these terms are small near the minimum and it is the first term in
the hessian which drives the final steps of the search.). The second term is also supposedly
a numerical nuisance, so we drop it for the effective expression of the hessian.

4.2 Levenburg-Marquardt

The final step towards solving a non-linear least squares system is providing a prescription
for stepping through parameter space and in particular choosing the constant in Eq 13. The
Levenberg-Marquardt approach is the classic way to do this [1]. In this approach the constant
for gradient decent is chosen to be proportional to the inverse of the second derivative with
respect to the parameter in question. Following this prescription, Eq 12 and Eq 13 can be
written

−


∂2χ2

∂p1∂p1
. . . ∂2χ2

∂p1∂pn
...

. . .
...

∂2χ2

∂pn∂p1
. . . ∂2χ2

∂pn∂pn


δp1...
δpn

 =


∂χ2

∂p1
...

∂χ2

∂pn

 , (16)

λ


∂2χ2

∂p1∂p1
0

. . .

0 ∂2χ2

∂p1∂p1


δp1...
δpn

 =


∂χ2

∂p1
...

∂χ2

∂pn

 , (17)

where λ is a constant. Eq 16 and Eq 17 specify, respectively, the quadratic (Eq 12) and
gradient (Eq 13) contributions to δ~p. These equations can be rewritten as a single operation
on the gradientδp1...

δpn

 =




∂2χ2

∂p1∂p1
(−1 + λ) . . . ∂2χ2

∂p1∂pn
...

. . .
...

∂2χ2

∂pn∂p1
. . . ∂2χ2

∂pn∂pn
(−1 + λ)



−1 

∂χ2

∂p1
...

∂χ2

∂pn

 , (18)

Setting the matrix on the right hand side to α(~p, λ), the expression simplifies to

δ~p = α(~p, λ)−15p χ
2. (19)

As a prescription for choosing λ and stepping around parameter space, here is a suggestion
from the ever useful Numerical Recipes books [2]

4

Data Reduction Notes 5 ERROR PROPAGATION

1. Solve Eq 19 for δ~p.

2. If χ2(~p+ δ~p) > χ2(~p), do not set ~p = ~p+ δ~p (reject the step) and increase λ by a factor
of 10. Return to start.

3. If χ2(~p+ δ~p) < χ2(~p), set ~p = ~p+ δ~p and decrease λ by a factor of 10. Return to start.

You stop iterating this sequence when the quantity χ2(~p + δ~p) − χ2(~p) is significantly less
than one.

5 Error Propagation

Let the variance on a dataset {di} (n long) be given by {σ2
i }. The variance of a function of

the data p({di}) is given by

σ2
p =

∑
i

∣∣∣∣ ∂p∂di
∣∣∣∣2 σ2

i (20)

A corollary of this is that, for functions linear in {di}, the fractional variance (σ2
p/p

2) of the
function is the quadrature sum of the fractional variance of the data. This is corollary does
not hold for non-linear functions.

Eq 20 can be written in vector form as

σ2
p = ~5dp ·N · ~5dp, (21)

where N is given by Eq 7. More generally we can define the covariance matrix of a set of m
dependent variables (e.g., model parameters) as

C = ~5d~p ·N · ~5d~p (22)

where ~5d~p has dimensions of (n×m). Referring to Eq 9 for an expression for ~p, the covariance
matrix takes the form

C = (MTN−1M)−1. (23)

This expression can be directly related to the Hessian of the chi-squared in Eq 8:

dχ2

d2~p
= 2MTN−1M ≡ 2α. (24)

Thus half the Hessian (defined here as α) is the inverse of the covariance matrix. For a
non-linear model which is well approximated by linear terms near the minimum of the chi-
squared function, the inverse of the α matrix is the formal covariance. This quantity can be
calculated at the end of a non-linear model fit in order to give errors – it is often returned
by algorithms based on the Levenburg-Marquardt chi-squared minimization.

Generally near the minimum, the chi-squared function can approximated by a second
order function:

∆χ2 = δ~p · α · δ~p (25)

5

Data Reduction Notes 6 MONTE CARLO SIMULATIONS

Table 1: Chi-squared values corresponding to confidence levels (CL) for various numbers of
degrees of freedom.

C.L. 1 dof 2 dof 3 dof

68% 1.00 2.30 3.53
95.4% 4.00 6.17 8.02

where we have used the definition of the matrix α from Eq 24, ∆χ2 = χ2 − χ2
min and

δ~p = ~p− ~pmin. In order to find the uncertainty in a parameter δp1, we allow this parameter
to take an arbitrary value and minimize over the other parameters. This latter condition
implies that the gradient of χ2 will be zero along directions besides that corresponding to
δp1.

d∆χ2

d~p
= α · δ~p =

c...
0

 (26)

Furthermore, for a single degree of freedom (δp1), the change in chi-square (Eq 25) corre-
sponding to the 68% confidence interval is ∆χ2 = δ~p · α · δ~p = 1. This condition constrains
the value of c in Eq 26 such that

δ~p(68%) = C

1/
√
C11

...
0

 , (27)

where we have used the identity C = α−1. It then follows that the standard deviation of
parameter p1 is

√
C11.

More generally, one can plot the confidence contours of multiple parameters. Given the
constraints of the printed page, two parameter error ellipses are most frequently used and
provide insight to degeneracy among parameters. For ν parameters, one constructs a ν × ν
sub-covariance matrix by extracting the intersections of rows and columns associated with
the parameters of interested. Then one plots chi-squared contours corresponding to the
appropriate confidence intervals. See Table 1.

6 Monte Carlo Simulations

Monte Carlo simulations are simulations of experiments. Monte Carlo is a famous gam-
bling venue, and this name must have been chosen because these simulations probe out the
probabilities associated with experiments.

• Random (or pseudorandom) data are generated based on either predictions/models or
statistical properties (i.e., errors) derived from existing samples.

• These simulated data are then reduced to derive model parameters.

• This prescription is repeated many times to explore the space of model parameters
allowed by the input errors.

6

Data Reduction Notes 6 MONTE CARLO SIMULATIONS

Monte Carlos are useful for planning an experiment. For a given experimental configuration
(e.g., integration time, distribution of measurements, etc), we can use Monte Carlos to
predict the resulting constraints on models. For instance, in the Muon Lifetime experiment
one can use Monte Carlos to estimate how many decay events are needed to constrain the
Muon lifetime to percent level. Or with the Rutherford scattering, one could use a Monte
Carlo to decide how long to integrate at each angle to get acceptable errors on the differential
crossection. In a similar way, Monte Carlos are also useful for propagating errors to models
once the dataset is taken.

6.1 Uniform Random Deviates

It’s impossible for computer programs to generate truly random sequences of numbers (ran-
dom deviates) for a Monte Carlo. Instead, there are algorithms to generate pseudorandom
numbers given an arbitrary seed. The seed can be provided from the user or pulled from
the lower order digits of the computer clock. A standard method for creating a pseudoran-
dom sequence of integers is the multiplicative congruential method for which the nth random
integer in the sequence is

xn = (axn−1) mod M. (28)

Where a and M are carefully chosen integers and x0 the seed. The modM operation is
the modulo with respect to M. This generates at most an M element sequence of numbers.
Numerical Recipes suggests a = 16807 and M = 232 − 1 [2]. These pseudorandom numbers
can be normalized such that they fall in the unit interval simply by dividing by M .

x′n =
(axn−1) mod M

M
. (29)

The numbers then approximate (for large M) random variables drawn from a uniform dis-
tribution on the unit interval:

p(x) =

{
1, if x ∈ [0, 1)

0, if x /∈ [0, 1)
. (30)

This distribution has mean µ = 0.5 and variance σ2 = 1/12 (see Eq 4). Our approximation
is characterized by µ = 0.5 and σ2 = 1/12− 1/6M .

6.2 Gaussian Random Deviates

Our experimental errors are generally approximated by the Gaussian distribution (Eq 5).
We therefore would like an algorithm that generates random deviates from this distribution.
In particular it would be nice to have an algorithm which generates deviates from a Standard
Gaussian distribution (Eq 6). Deviates from the standard distribution can be scaled to any
Gaussian distribution with by the transformation z = σx+ µ.

We are helped here by the central limit theorem which states that the sum of N
random samples from any distribution tends to a Gaussian distribution for large N . Consider
the uniform random deviates generated by the algorithm in Eq 29 and drawn from the

7

Data Reduction Notes REFERENCES

Figure 1: Gaussian Deviates. The normalized histogram derives from 100,000 random devi-
ates derived as in Eq 31 with N = 12.

distribution 30. For N uniform deviates thus defined, we can approximate a Gaussian
deviate by

xG =
N∑
i=1

xi −N/2. (31)

The distribution describing xG has mean µ = 0. and variance σ2 = N/12 (recall the uniform
distribution has σ2 = 1/12). A convenient choice the approximate a Standard Gaussian
distribution is then N = 12.

Of course there are packaged routines for computing deviates. For instance, the numerical
python package has numpy.random.uniform() and numpy.random.normal().

References

[1] Kenneth Levenberg. “A Method for the Solution of Certain Non-Linear Problems in
Least Squares”. The Quarterly of Applied Mathematics 2: 164-168 (1944).

[2] William Press et al. Numerical Recipes in C. Cambridge: Cambridge University Press,
1992.

8

